A simple pendulum is consist of a 0.25 kg mass suspended in the vertical plane by a massless string of 0.5 m long. Assume that the pendulum moves in a plane.
We need to numerically simulate the motion of the pendulum if it is released from rest with the string at 3 degrees from the vertical. We also need to plot the angle that the string makes with the vertical as a function of time. On the same axes, we need to plot the analytically solution for the angle obtained by linearizing the equations of motion assuming small oscillations.
<!--[if !vml]--><!--[endif]-->
Note: When you want to change IVP (initial value problem) in the angle, just change the initial angle where you want to release the pendulum from the rest.
The rights to the contents of this post is reserved to Solid Mechanics.
Deriving Equations of motion:
Linearizing the equation of motion by assuming small motion:
We have used three methods to plot the responses. Using Visual Basic's code in excel, using MatLAB code, and MatLAB using ode45 (ordinary differential equation)
Numerical Solution vs. Theoretical Solution by Excel using Visual Basic in time steps of 0.00001 sec and step report of 0.1 sec
tstep
|
0.00001
|
t
|
θ
|
θ dot
|
θ calc
|
θ dot calc
|
g
|
9.81
|
0
|
0.052359878
|
0
|
0.052359878
|
0
|
l
|
0.5
|
0.1
|
0.047309471
|
-0.099363422
|
0.047306808
|
-0.099403607
|
0.2
|
0.033130848
|
-0.179569434
|
0.033122908
|
-0.179621022
|
||
step
|
0.1
|
0.3
|
0.012560726
|
-0.225132799
|
0.012545855
|
-0.225169238
|
0.4
|
-0.010435845
|
-0.227254355
|
-0.010452712
|
-0.227256856
|
||
0.5
|
-0.031416854
|
-0.185522546
|
-0.031433769
|
-0.185480938
|
||
0.6
|
-0.046336661
|
-0.10800505
|
-0.046347699
|
-0.107904781
|
||
0.7
|
-0.052317983
|
-0.00966367
|
-0.052315919
|
-0.009501595
|
||
0.8
|
-0.048206739
|
0.090551683
|
-0.048186484
|
0.090735523
|
||
0.9
|
-0.03479602
|
0.173302551
|
-0.03475643
|
0.173459503
|
||
1
|
-0.014671658
|
0.222630468
|
-0.014617932
|
0.222703537
|
||
1.1
|
0.008286473
|
0.229000974
|
0.008342018
|
0.228962885
|
||
1.2
|
0.029643814
|
0.191179991
|
0.029691849
|
0.191029412
|
||
1.3
|
0.045283128
|
0.116471554
|
0.045310767
|
0.116224772
|
||
1.4
|
0.052185174
|
0.019311907
|
0.052184115
|
0.018987236
|
||
1.5
|
0.049020361
|
-0.081581489
|
0.04898525
|
-0.081915084
|
||
1.6
|
0.036397484
|
-0.166747352
|
0.036331592
|
-0.167006725
|
||
1.7
|
0.016752931
|
-0.219746566
|
0.016665464
|
-0.219863891
|
||
1.8
|
-0.006126974
|
-0.230346508
|
-0.006217316
|
-0.23028446
|
||
1.9
|
-0.027822822
|
-0.196494403
|
-0.027900073
|
-0.196257126
|
||
2
|
-0.044152002
|
-0.124728309
|
-0.044197753
|
-0.124349608
|
Numerical simlation vs. theoretical solution using MATLAB
clear all
% l*(theta doubledot)+g*theta=0 .... (thtea doubledot)=-g/l*theta
% let theta=z1, xthetadot=z1dot=z2, thetadoubledot=z2dot
%[z1dot;z2dot] =[z2; -g/l*theta]
clear all
m=.25;
g=9.81;
l=0.5;
defn=inline('[z2;-9.81*0.25*.5/(.5^2*.25)*sin(z1)]','t','z1','z2');
a=0; b=2; N=2/0.001;
h=(b-a)/N; t=a+h*(0:N); LT=length(t);
x0=3*pi/180; y0=0;
w(:,1)=[x0;y0];
w(:,2)=[x0;y0];
for j=2:LT
w(:,j)=w(:,j-1)+h*defn(t(j-1),w(1,j-1),w(2,j-1));
end
z1=w(1,:);
z2=w(2,:);
thetat=3*pi/180*cos(sqrt(9.81/.5)*t);
thetadott=-3*pi/180*sqrt(9.81/.5)*sin(sqrt(9.81/.5)*t);
xt=thetat
yt=thetadott
figure(1)
plot(t,z1,'b',t,xt,'r--')
xlabel('t -sec')
ylabel('\theta -rad')
legend('\theta','\theta true')
title('Numerical Simulation vs. theoretical calculation')
grid on
figure(2)
plot(t,z2,'g',t,yt,'r--')
xlabel('t -sec')
ylabel('\theta_d_o_t -rad/sec')
legend('\theta_d_o_t','\theta_d_o_t true')
title('Numerical simulation of velocity vs. theoretical solution')
grid on
Numerical solution using MATLAB ode45
function zprime = ME716_6_1(t,z);
%SECONDODE: Computes the derivatives of y 1 and y 2,
%as a colum vector
g=9.81; l=0.5;
zprime = [z(2); -g/l*sin(z(1))];
The top and bottom part of this code from this section should be saved into different m-files
T=[0:0.1:2];
Z0=[85*pi/180 0]';
[t,z]=ode45(@ME716_6_1,T,Z0)
g=9.81
l=0.5
m=0.25
theta=85*pi/180*cos(sqrt(g/l)*t)
tdot=-85*pi/180*sqrt(g/l)*sin(sqrt(g/l)*t)
figure(1)
plot(t,z(:,1),'r',t,theta,'b--')
title('Numerical simulation vs. theoretical calc.')
xlabel('time t sec')
ylabel('angular position \theta rad')
legend('\theta Numerical', '\theta calc.')
grid on
figure(2)
plot(t,z(:,2),'r',t,tdot,'b--')
title('Numerical simulation vs. theoretical calc.')
xlabel('time t sec')
ylabel('angular velocity \theta_d_0_t rad/sec')
legend('\theta_d_o_t Numerical', '\theta_d_o_t calc.')
grid on
Note: When you want to change IVP (initial value problem) in the angle, just change the initial angle where you want to release the pendulum from the rest.
The rights to the contents of this post is reserved to Solid Mechanics.