Cast Iron
Cast irons constitute a whole family of materials. Their main advantages are relatively low cost and ease of fabrication. Some are weak in tension compared to steels but, like most cast materials, have high compressive strengths. Their densities are slightly lower than steel at about 0.25 lb/in3 (6920 kg/m3). Most cast irons do not exhibit a linear stress-strain relationship below the elastic limit; they do not obey Hooke’s law. Their modulus of elasticity E is estimated by drawing a line from the origin through a point on the curve at 1/4 the ultimate tensile strength and is in the range of 14–25 Mpsi (97– 172 MPa). Cast iron’s chemical composition differs from steel principally in its higher carbon content, being between 2 and 4.5%. The large amount of carbon, present in some cast irons as graphite, makes some of these alloys easy to pour as a casting liquid and also easy to machine as a solid. The most common means of fabrication is sand casting with subsequent machining operations. Cast irons are not easily welded, however.
WHITE CAST IRON is a very hard and brittle material. It is difficult to machine and has limited uses, such as in linings for cement mixers where its hardness is needed.
GRAY CAST IRON is the most commonly used form of cast iron. Its graphite flakes give it its gray appearance and name. The ASTM grades gray cast iron into seven classes based on the minimum tensile strength in kpsi. Class 20 has a minimum tensile strength of 20 kpsi (138 MPa). The class numbers of 20, 25, 30, 35, 40, 50, and 60 then represent the tensile strength in kpsi. Cost increases with increasing tensile strength. This alloy is easy to pour, easy to machine, and offers good acoustical damping. This makes it the popular choice for machine frames, engine blocks, brake rotors and drums, etc. The graphite flakes also give it good lubricity and wear resistance. Its relatively low tensile strength recommends against its use in situations where large bending or fatigue loads are present, though it is sometimes used in low-cost engine crankshafts. It runs reasonably well against steel if lubricated.
MALLEABLE CAST IRON has superior tensile strength to gray cast iron but does not wear as well. The tensile strength can range from 50 to 120 kpsi (345 to 827 MPa) depending on formulation. It is often used in parts where bending stresses are present.
NODULAR (DUCTILE) CAST IRON has the highest tensile strength of the cast irons, ranging from about 70 to 135 kpsi (480 to 930 MPa). The name nodular comes from the fact that its graphite particles are spheroidal in shape. Ductile cast iron has a higher modulus of elasticity (about 25 Mpsi {172 GPa}) than gray cast iron and exhibits a linear stress-strain curve. It is tougher, stronger, more ductile, and less porous than gray cast iron. It is the cast iron of choice for fatigue-loaded parts such as crankshafts, pistons, and cams. See Table 1 for mechanical properties of some cast iron alloys
Table 1: Mechanical Properties of Some Cast Iron Alloys |